Performance of different three-dimensional scaffolds for in vivo endochondral bone generation.

نویسندگان

  • W Yang
  • S K Both
  • G Jvm van Osch
  • Y Wang
  • J A Jansen
  • F Yang
چکیده

In the context of skeletal tissue development and repair, endochondral ossification has inspired a new approach to regenerate bone tissue in vivo using a cartilage intermediate as an osteoinductive template. The aim of this study was to investigate the behavior of mesenchymal stem cells (MSCs) in regard to in vitro cartilage formation and in vivo bone regeneration when combined with different three-dimensional (3D) scaffold materials, i.e., hydroxyapatite/tricalcium phosphate (HA/TCP) composite block, polyurethane (PU) foam, poly(lactic-co-glycolic acid)/poly(ε-caprolactone) electrospun fibers (PLGA/PCL) and collagen I gel. To this end, rat MSCs were seeded on these scaffolds and chondrogenically differentiated in vitro for 4 weeks followed by in vivo subcutaneous implantation for 8 weeks. Nonetheless, the quality and maturity of in vivo ectopic bone formation appeared to be scaffold/material-dependent. Eight weeks of implantation was not sufficient to ossify the entire PLGA/PCL constructs, albeit a comprehensive remodeling of the cartilage had occurred. For HA/TCP, PU and collagen I scaffolds, more mature bone formation with rich vascularity and marrow stroma development could be observed. These data suggest that chondrogenic priming of MSCs in the presence of different scaffold materials allows the establishment of reliable templates for generating functional endochondral bone tissue in vivo without using osteoinductive growth factors. The morphology and maturity of bone formation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mechanical performance of three-dimensional bio- nanocomposite scaffolds designed with digital light processing for biomedical applications

Introduction: The need for biocompatible and bioactive scaffolds to accelerate the regeneration and repair of fractured bones has been considered for bone tissue engineering applications during recent decades. The new methods were developed to produce scaffolds to improve the tissue quality, size of cavities, control the porosity and increase the scaffold compressive strength u...

متن کامل

Numerical Simulation of Homogeneous, Two and Three Lattice Layers Scaffolds with Constant Density

Advances in the additive manufacturing technology have led to the production of complex microstructures with unprecedented accuracy and due todesigning an effective implant is a major scientific challenge in bone tissue regeneration and bone growth. In this research, titanium alloy cylindrical scaffolds with three-dimensional architectures have been simulated and compared for curing partial bon...

متن کامل

Tissue Engineering Scaffolds: History, Types and Construction Methods

Tissue engineering is a rapidly growing research field, potentially capable of de novo tissue and organ construction. This approach is used to improve efficiency both in the tissue and cell culture. This method is required to provide bodies in vivo three-dimensional conditions outside of the body (ex vivo). To achieve this goal, given tissue cells are cultured on the tissue engineering scaffold...

متن کامل

Tissue Engineered Scaffolds in Regenerative Medicine

Stem cells are self-renewing cells that can be differentiated into other cell types. Conventional in vitro models for studying stem cells differentiation are usually preformed in two-dimensional (2D) cultures. The design of three-dimensional (3D) in vitro models which ideally are supposed to mimic the in vivo stem cells microenvironment is potentially useful for inducing stem cell derived tissu...

متن کامل

A novel three-dimensional printing of electroconductive scaffolds for bone cancer therapy application

Objective(s): Tissue engineering aims to achieve a tissue, which has highly interconnected porous microstructure concurrent with appropriate mechanical and biological properties. Materials and Methods: Therefore, the microstructure scaffolds are of great importance in this field. In the present study, an electroconductive poly-lactic acid (EC-PLA) filament used to fabricate a porous bone ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • European cells & materials

دوره 27  شماره 

صفحات  -

تاریخ انتشار 2014